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ASYMPTOTE OF THE NAVIER-STOKES EQUATION SOLUTION IN THE 

VICINITY OF A BOUNDARY ANGLE 

V. A. Kondrat'ev UDC 532.516 

In a study of single-sided limitations for the Navier-Stokes equations, [i] considered 
the function ~;(r, ~), which satisfies the equation 

AA~ = 0, r < e ,  - - n <  q ) < 0  (1) 

(where ~ > 0 is a constant) with boundary conditions 

~ = 0 ,  A~; = 0, r  0 < r < e ,  
ar 

~2=0,  ~-~=r ,  %o=--~ ,  0 < r < ~ .  

Here (r, cp) is a planar polar coordinate system and A is the Laplace operator. In addition 
we assume the function belongs to the Sobolev space W~ in the semicircle $8 = {(r, @:r <e, 
--~ < ~ < 0}. Using the method developed in [2, 3] the authors presented the expression 

~ = -  rsinq) + Ar3/~(sin-~ + sin~)+O(r~lnr) (2) 

for r-~ 0,--~ < ~ < 0, A = const, which is dependent on ~. Asymptotic representations of 
a~/ar, a~;/acp, A~ can be obtained from Eq. (2) by formal differentiation. In fact, Eq. (2) 
can be refined: for ~0 one can expand in an asymptotic series [2, 4] 

= -- r sin $t ~ A~rr (cp), Aj ---- const, (3) j=3 
where (Dj are eigenfunctions, normalized in L2[--~, 0], of the problem 

T1~ "= -- 2 2 c I 3 + T ~ "  + c D ! v = 0 ,  
(4) 

--~ < ~ <0, ~(- ~) = ~(0) = 0, ~' (-~) = ~" (0) = 0 

Equation (3) is asymptotic in the sense that no matter what the value of N, the estimates 

I D= (,) q- r sin ~ -- L A7112*i (~) l = O(r(N+1)'~-'~l~ t=3 

are valid as r + 0 for all ~. Here D~=aI~I/ax~iax~2; l~i : ~z + e2- Note that Eq. (4) with 
constant coefficients is easily solved and the eigenfunctions of Eq. (4) can be written ex- 
plicity; Equation (3) is a special case of a more general expression which gives the asympto- 
tic representation of a boundary problem for an arbitrary elliptic equation in the vicinity 
of an angular point on the region's boundary. It follows from Eq. (3) that in Eq. (2) the 
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residual term can be replaced by O(r2), and its second derivatives are finite. In [4], which 
was used in [i] in deriving Eq. (2), it was not Eq. (i), but the nonlinear Navier-Stokes 
equation 

az~aau auaau O, r<e ,  0 < ~ . < 2 n  ~AAu + o~ ou ou 0~ ( 5 )  

which was studied with boundary conditions 

0u 
u = ~ = O ,  q~=O, qc=2a,  O < r < e .  (6) 

It was assumed that u~W~(Se), Se = {x:0<~<2a, 0<r<e}. We will call the generalized 
solution of Eqs. (5), (6) the function u(x)~W~(Se), satisfying boundary conditions (6), and 
such that 

Ss z S~ \axl " z 

f o r  any %b (x) ~ ffz~ (Se). 

In r e a l i t y ,  t h e  r e p r e s e n t a t i o n  o f  Eq. (2) w i t h  r e s i d u a l  t e rm of  t h e  o r d e r  of  O(r 2) can 
a l s o  be o b t a i n e d  f o r  t h e  s o l u t i o n  o f  Eqs. ( 5 ) ,  ( 6 ) .  In do ing  t h i s  we w i l l  make use  of  r e -  
s u l t s  from estimates Lp(l < p < ~) of the boundary problem solutions of [5], which were not 
known at the time that [3] appeared. It was proved in [5] that if u(x) is a generalized 
solution of the equation 

O/t of. z 

in Ss, satisfying boundary conditions (6), 

then 

? 
u(x)~W~(Se),  q ~ 2 ,  J]/i[Vdxldx2<cc, p > I ,  i = i , 2 ,  

Se 

u(x)= A,'a/'2(sin @ @ sin3--~)-- Uo(X), (7) 

where 

I ] "~ ~ 2 , lluolr ~ . . . .  <~ c Z l lkJIL~ = 11 u lii~(s~) , i < p < ,, Wp\~ Li= I - . . 

and 

Here 

Moreover, 

(x) llw=(s~/2)p ~ c I1. IlL= + ,=~ ',1/~ ll~.(s~) ~ 0  
m 

This result can be used to study the problem of Eqs. 

] A l ~ C lJ ~ IIL,<s~> + ~, It k li%<s~) for I < p < 2, 
i = l  J 

[ ' 1 fAl+lel~<C I[ullr~(s~)+~llktl%(s~)for 2 < p < 3 .  
(5) and ( 6 ) .  

(8) 
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Theorem. If u(x)~W~(S~) is a solution of the problem of Eqs. (5), (6), then u(x) 
has the form of Eq. (8), where 

[ Ohuo(x) / 
O-.<hl+h2=h..<2 OXllOX2 2 [ W2(Se) 

(9) 

x ~ S J ~  , C = const, of which the solution is independent. 

Proof. Equation (5) can be written in the form 

v h A u - -  o [ o t  Au~ o / .  o~ ~ o/, o/o 
(io) 

Here  /, ~ L.~(Qe), /2 ~ Ls(Q~) f o r  any s < 2, s i n c e  Au ~ L2(-O-z), g rad  u ~ Lp(Q~) 
Thus,  Eq. ( 7 ) ' i s  v a l i d  f o r  u ( x ) ,  where  u o ( x )  s a t i s f i e s  t h e  i n e q u a l i t y  

o% ! 
,, II jl,,4(s  ) v p  < e. lh+k2=a IJ Oxi Oz= [Lp(S~/.2) 

for any p < ~. 

(ii) 

From gq. (ii) and the Sobolev inclusion theorem it follows that uo~W~(S~/2), uo~C1(S~/~) for 
any q. Representing u in the form of Eq. (7) in Eq. (i0), for u o we obtain 

vhhu 0 -is F o 

where F i ~ Lp(SJ2), F, ~ Lp(Sd2) for any p < 4 and 

[[ F1 [ILp(S~/2) 4- I1 F2 I]Lp(S~/2) < C I[ u I] ~ �9 w?(s~) 

Using Eq. (8)  f o r  uo ,  we have  

u o = A l r a ] " ( s i n @ + s i n 3 ~ 2 ) + B l r 2 s i n 2 q ) + v o ( x ) .  (12) 

Here uo(x)~W~(Se/a) for any p < 4. From the Sobolev inclusion theorem we now know that 
~ uo~C-(~/4). Substituting u 0 in the form of Eq. (12) in Eq. (7) we find the required Eq. 

(9), where v0 ~ C:(Sd4). 
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